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a b s t r a c t 

The progression of neurodegenerative diseases, such as Alzheimer’s Disease, is the result of complex mecha- 
nisms interacting across multiple spatial and temporal scales. Understanding and predicting the longitudinal 
course of the disease requires harnessing the variability across different data modalities and time, which is ex- 
tremely challenging. In this paper, we propose a model based on recurrent variational autoencoders that is able 
to capture cross-channel interactions between different modalities and model temporal information. These are 
achieved thanks to its multi-channel architecture and its shared latent variational space, parametrized with a 
recurrent neural network. We evaluate our model on both synthetic and real longitudinal datasets, the latter 
including imaging and non-imaging data, with 𝑁 = 897 subjects. Results show that our multi-channel recurrent 
variational autoencoder outperforms a set of baselines (KNN, random forest, and group factor analysis) for the 
task of reconstructing missing modalities, reducing the mean absolute error by 5% (w.r.t. the best baseline) for 
both subcortical volumes and cortical thickness. Our model is robust to missing features within each modality 
and is able to generate realistic synthetic imaging biomarkers trajectories from cognitive scores. 
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. Introduction 

Alzheimer’s Disease (AD) is an irreversible neurodegenerative dis-
ase that causes progressive cognitive impairment, leading to death
 Lane et al., 2018 ). AD currently has no cure and causes an enor-
ous strain on healthcare systems, due to the care needed by patients

 Alzheimer’s Association., 2018 ). AD is a multifactorial disease that af-
ects different systems and processes of the brain ( Jack et al., 2010 ).
hose processes are captured using different biomarkers coming from
arious imaging modalities, such as magnetic resonance imaging (MRI)
o capture atrophy, or positron emission tomography (PET) for glucose
ptake or blood flow. Moreover, for a disease as complex as AD, it is
ecessary to study not only how those different biomarkers interact with
ach other, but also how they progress over time. For this reason, the
se of multimodal longitudinal data, captured over several visits or time
oints, is extremely valuable to researchers. However, it is often diffi-
ult to use this kind of medical data, as it can present missing obser-
∗ Corresponding author. 
E-mail address: gerard.marti@upf.edu (G. Martí-Juan) . 

1 Data used in preparation of this article were obtained from the Alzheimer’s Dise
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ations across modalities (e.g. impossibility of patients to receive inva-
ive testing) and over time (e.g. due to medical follow-ups that were
issed). 

Combining information from imaging and non-imaging (e.g. ge-
etics, clinical data) data and understanding how they relate to each
ther is crucial to enable an integrative analysis of the disease. For
his task, commonly used methods are canonical correlation analysis
CCA) ( Hardoon et al., 2004 ), which learns a shared representation
etween two modalities of data, partial least squares (PLS) ( Édith Le
loch et al., 2012 ), which maximizes the covariance between two sets
f latent variables, and reduced rank regression (RRR) ( Vounou et al.,
010 ), among others. For more than two modalities, Group Factor
nalysis (GFA) ( Klami et al., 2015 ) presents a similar formulation in-

roducing linear factors that describe the relationships between the
odalities and the shared latent variables. More complex deep learn-

ng based methods have also been used to find a common representa-
ion for specific tasks, and to create models that are robust to missing
ase Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the 
nd/or provided data but did not participate in analysis or writing of this report. 
du/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf . 
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2 https://www.github.com/GerardMJuan/RNN-VAE . 
nformation ( Ngiam et al., 2011; Tsai et al., 2019 ). Recently, methods
ased on generative variational autoencoders (VAE) have been proposed
o jointly learn a probabilistic latent space that encompasses the rela-
ion between different modalities ( Shi et al., 2019; Wu and Goodman,
018 ). Antelmi et al. (2019) proposed a multi-channel VAE that, using
ultiple modalities of cross-sectional data, is able to separate between
iagnosis and show relationships between modalities. Their method in-
ers a lower dimensional latent space that accounts for dependencies
cross the channels, being able to generate those that were missing in
pecific patients. These methods, however, have only been applied on
atasets with no temporal information. 

The problem of analysing longitudinal data can be tackled as a se-
uence learning problem. Cao et al. (2019) proposed a method us-
ng CCA to compare two different time series, and applied it to func-
ional MRI analysis. Recurrent neural networks (RNN) ( Hochreiter and
chmidhuber, 1997 ) have also become a powerful tool for sequence
earning in the past few years. Although they have been mainly used
or natural language processing ( Goldberg, 2017 ), they have also been
pplied in other fields, such as image generation ( Gregor et al., 2015 )
nd AD progression and prediction ( Lee et al., 2019; Mehdipour Ghazi
t al., 2019; Nguyen et al., 2018; Wang et al., 2018 ). Variational RNN
odels ( Chung et al., 2015; Fabius and van Amersfoort, 2015 ) add a

ariational approximation of the latent space to the RNN architecture,
llowing it to capture more complex temporal variations by setting de-
endencies across time between the random latent variables. 

Modelling data that are both longitudinal and multimodal is a diffi-
ult task because it requires modelling both temporal and cross-modality
ariability, as well as inter- and intra- subject variability ( Verbeke et al.,
014 ). For neurodegenerative diseases, progression modelling methods
an be used to leverage medical data to identify and predict the trajec-
ories of biomarkers. This can lead to better characterization and under-
tanding of the evolution of the disease ( Martí-Juan et al., 2020; Oxtoby
nd Alexander, 2017 ). 

There has been various methods presented in the literature for
eurodegenerative disease progression modelling. Some approaches
nfer clinical data trajectories from brain imaging data ( Lei et al.,
020 ), directly model the trajectories ( Fisher et al., 2019 ), or ac-
ount for irregularly sampled data points ( Moore et al., 2019 ).
arinescu et al. (2019) proposed a spatiotemporal progression model

n the cortex surface, finding finer progression details of atrophy pro-
ression. El-Sappagh et al. (2020, 2021) proposed an explainable mul-
ilayer method with time-series neuroimage data for disease classifica-
ion. Other methods focus on grouping different imaging or non-imaging
odalities. Event based models ( Fonteijn et al., 2012; Young et al., 2014;
015 ) aim to discover, for a set of multimodal biomarkers, the order
n which they will degenerate. These methods were later extended in
oung et al. (2018, 2021) for unsupervised subtyping and determin-

ng progression stage. Other remarkable approaches to the problem are
ulti-task learning models, which divide the problem into several tasks

per modality, or per subject) and aim to solve them together ( Aksman
t al., 2019; Nie et al., 2017 ). Finally, Gaussian processes ( Hyun et al.,
016; Lorenzi et al., 2019; 2015 ) allow characterizing the uncertainty
f the progression. 

Most of the methods described in this section are limited in the num-
er of modalities they can combine or in the amount of longitudinal data
hey use (cross-sectional data, or only short-term data). Moreover, it is
ot clear how to combine longitudinal modalities that have different
mount of time points and/or capture patients at different stages of the
isease. This is still an open problem in longitudinal data analysis for
eurodegenerative diseases. 

In this paper, we propose a multi-channel recurrent variational au-
oencoder (MC-RVAE) for multimodal longitudinal disease progression
odelling. Similarly to Antelmi et al. (2019) , we jointly model the de-
endencies across the channels of the network, but extend this rationale
y adding a variational recurrent block to capture the temporal depen-
encies alongside every channel. This kind of formulation can account
2 
or longitudinal data with a variable number of time points and miss-
ng modalities. We show that the model captures the progression of the
isease and the relationships between the modalities and is able to re-
onstruct missing modalities over time, even in the presence of missing
ata within modalities. We provide an interpretable representation of
he evolution and show that the parameters learned by the model can
e used to interpret the learned relationships between modalities. In
ddition, we conduct a sensitivity analysis to evaluate the importance
f each individual feature in each modality for the reconstruction. We
lso present qualitative results of cross-modality reconstructions, show-
ng synthetic brain data reconstructed from non-imaging data that is
onsistent with the progression of the disease. 

. Materials and methods 

All code used to produce the pipeline and experiments described in
his paper can be found in the repository of the project. 2 

.1. MC-RVAE: Multi-channel recurrent variational autoencoder 

Let 𝑥 = ( 𝑥 1 , … , 𝑥 𝑇 ) be a sequence of multivariate samples defined
ver 𝑇 time points, where each 𝑥 𝑡 = ( 𝑥 1 

𝑡 
, … ., 𝑥 𝐶 

𝑡 
) is a set of observations

n 𝐶 channels. Thus, 𝑥 𝑐 
𝑡 

denotes the input at channel 𝑐 and time 𝑡 . To
implify the notation, we assume that all channels have the same num-
er of time points, although this can be extended to uneven sampling
f measurements in time. We base our model on the assumption that
here are dependencies across time steps and across channels, given the
ultifactorial and progressive nature of AD. To capture the temporal
ependencies, we use a variational RNN, similar to the one described
n Chung et al. (2015) , where we generate latent variables 𝑧 𝑡 at each 𝑡 ,
hich are conditioned on the RNN hidden state ℎ 𝑡 −1 of the RNN at the
revious temporal step. For the inter-channel dependencies we assume,
imilarly to Antelmi et al. (2019) , that all channels share the same latent
pace 𝑧 𝑡 , and that each channel is conditionally independent from the
thers given 𝑧 𝑡 . Conditional independence implies that all the modalities
re completely defined by the common latent factor. This latent vari-
ble is common to all the modalities and thus represents their common
ariability, i.e. their interdependence. Noteworthy, the assumption of
onditional independence also brings some useful statistical properties,
ince the derivation of the lower bound is more tractable, and allows for
he reconstruction across modalities. Figure 1 summarizes a summary
iagram of the model and its main characteristics. 

We first describe the encoder and the decoder of our model for a
pecific channel 𝑐 and time point 𝑡 : 

𝑞( 𝑧 𝑡 |𝑥 𝑐 ≤ 𝑡 , 𝑧 <𝑡 ) =  ( 𝜇𝑧 𝑡 , Σ𝑧 𝑡 
) , where [ 𝜇𝑧 𝑡 , Σ𝑧 𝑡 

] = 𝜑 

𝑐 
𝑒𝑛𝑐 

( 𝑥 𝑐 
𝑡 
, ℎ 𝑡 −1 ) 

𝑝 ( 𝑥 𝑐 
𝑡 
|𝑧 ≤ 𝑡 , 𝑥 𝑐 <𝑡 ) =  ( 𝜇𝑥 𝑐 

𝑡 
, Σ𝑥 𝑐 

𝑡 
) , where [ 𝜇𝑥 𝑐 

𝑡 
, Σ𝑥 𝑐 

𝑡 
] = 𝜑 

𝑐 
𝑑𝑒𝑐 

( 𝑧 𝑡 , ℎ 𝑡 −1 ) , 
(1) 

here 𝑥 𝑐 
≤ 𝑡 

represents the set of 𝑥 𝑐 at time points between 1 and 𝑡 and
ikewise for 𝑧 <𝑡 from 1 to 𝑡 − 1 . The first line of Eq. (1) corresponds to
he approximate posterior or encoder, defined by a normal distribution
arametrized by 𝜑 

𝑐 
𝑒𝑛𝑐 

for each channel, which can be any differentiable
unction (for example, a neural network). The second line corresponds
o the decoder, defined similarly to the encoder. They both depend on
 𝑡 −1 . The hidden state is updated recurrently by: 

 𝑡 = 𝑓 𝜃( 𝑧 𝑡 , ℎ 𝑡 −1 ) , (2) 

here 𝑓 𝜃 can be parametrized by any recurrent architecture. We can
hen define the prior of 𝑧 𝑡 as: 

 𝑡 ∼  ( 𝜇0 ,𝑡 , Σ0 ,𝑡 ) , where [ 𝜇0 ,𝑡 , Σ0 ,𝑡 ] = 𝜑 𝑝𝑟𝑖𝑜𝑟 ( ℎ 𝑡 −1 ) . (3)

Accounting for the dependencies described by the recurrent step in
q. (2) , for any time point 𝑇 > 1 and channel 𝑐, the encoder and decoder

https://www.github.com/GerardMJuan/RNN-VAE
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Fig. 1. Summary of the model. The input data is a sequence of modalities or channels (two in this figure), which can have different dimensionality and characteristics. 
Each channel has specific decoders and encoders, while the latent variable 𝑧 , defined using a recurrent neural network, is shared across channels. This characteristic 
allows cross-channel reconstruction (for example, generating channel c1 from channel c2, or viceversa). 

Fig. 2. Building block of the network, for a single channel, given an input 𝑥 𝑡 
(channel index has been dropped for clarity). 𝑥 𝑡 is the input at time-step 𝑡 , ℎ 𝑡 is 
the hidden state of the RNN at time 𝑡 , while ℎ 𝑡 −1 is the hidden state of the RNN 

at previous time-step 𝑡 − 1 . 
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an be factorized as: 

( 𝑧 ≤ 𝑇 |𝑥 𝑐 ≤ 𝑇 ) = 

𝑇 ∏
𝑡 =1 

𝑞( 𝑧 𝑡 |𝑥 𝑐 ≤ 𝑡 , 𝑧 <𝑡 ) (4)

 ( 𝑥 𝑐 
≤ 𝑇 

, 𝑧 ≤ 𝑇 ) = 

𝑇 ∏
𝑡 =1 

𝑝 ( 𝑥 𝑐 
𝑡 
|𝑧 ≤ 𝑡 , 𝑥 𝑐 <𝑡 ) 𝑝 ( 𝑧 𝑡 |𝑥 <𝑡 , 𝑧 <𝑡 ) . (5)

These expressions will be used for the derivation of the lower bound
f the model ( Section 2.1.1 ). Figure 2 shows the main recurrent building
lock of the network, for a single channel. Figure 3 shows the recurrent
nd inference procedure in the network for multiple channels. 

.1.1. Lower bound 

The optimization objective of the MC-RVAE is the evidence lower
ound (ELBO) of the log-evidence of the data. This lower bound can be
xpressed as: 

 = 𝔼 𝑐 𝔼 𝑞( 𝑧 ≤ 𝑇 |𝑥 𝑐 ≤ 𝑇 ) 
[ 𝑇 ∑

𝑡 =1 

( 𝐶 ∑
𝑖 =1 

ln 𝑝 ( 𝑥 𝑖 
𝑡 
|𝑧 ≤ 𝑇 , 𝑥 <𝑡 ) −  𝐾𝐿 ( 𝑞( 𝑧 𝑡 |𝑥 𝑐 ≤ 𝑡 , 𝑧 <𝑡 ) ||𝑝 ( 𝑧 𝑡 |𝑥 <𝑡 , 𝑧 <𝑡 )) 

)]
, 

(6) 

here  𝐾𝐿 denotes the Kullback-Leibler (KL) divergence. The first term
f Eq. (6) forces the joint decoding of the channels at each time point, al-
owing us to predict missing channels. The second term, which acts as a
egularization, forces the encoders of each channel to be close to a com-
on prior generated from the previous time point, enforcing a temporal

egularity. By maximizing this lower bound for the model parameters,
3 
e are also maximizing the log-evidence of the data. Supplementary file
1 contains the full derivation of the lower bound. 

.1.2. Practical implementation of MC-RVAE with heterogeneous data 

odalities 

To take into account the different channels, we scale the reconstruc-
ion loss of each channel by the associated channel dimensions, rather
han summing the losses up, as it is usually done when computing mul-
ivariate losses. In this way, we give the same importance to all channels
egardless of their dimensionality. 

Using a variable number of time points per subject (due to missing
ata) could lead to a bias towards samples with more time points. For
his reason, we scale the lower bound in Eq. (6) by the number of non-
issing time points to ensure that every subject contributes equally to

he cost function regardless of their number of available time points. 
With the differences in dimensionality across channels, dimensions

n the shared latent space will encode different aspects of the channels:
ertain dimensions are shared across all channels, while others are used
o represent with larger capacity channels that have larger dimension-
lity. For channels with a dimensionality smaller than 𝑧 𝑑𝑖𝑚 , we could
ave an overfitting issue. To solve this, we introduce a constraint in the
atent space so that we force the reconstruction from those channels to
nly use a subset of the latent space dimensions. 

.1.3. Variational dropout 

Variational dropout was proposed by Kingma and Ba (2015) to reg-
larize variational autoencoders and sparsify their latent space. This
pproach is based on defining a sparsity inducing prior on the latent
eights, and on the parameterization of the variational posterior such

hat the estimated variance is associated to a “dropout ” rate, which spec-
fies the degree of sparsity associated with each latent dimension. This
eparametrization is defined as: 

( 𝑧 𝑡 |𝑥 𝑐 ≤ 𝑡 , 𝑧 <𝑡 ) =  ( 𝜇𝑧 𝑡 , 𝛼𝜇
2 
𝑧 𝑡 
) , 

𝑝 ( 𝜇𝑧 𝑡 ) ∝
1 

|𝜇𝑧 𝑡 | , (7) 

ith 𝛼 being the learned parameter shared across channels and time
oints, which quantifies the dropout rate for the given latent dimen-
ion. With this reparametrization, we can use the approximation of
 defined by Molchanov et al. (2017) ( Eq. (8) ) that only depends
𝐾𝐿 
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Fig. 3. Main processes of the model for inference and 
reconstruction. a) Prior of 𝑧 𝑡 , which depends on ℎ 𝑡 −1 . 
b) Recurrence step of the network, depending on ℎ 𝑡 −1 
and 𝑧 𝑡 , and shared across channels. c) Inference pro- 
cess for a single channel 𝑐 and a specific time point 
𝑡 : the decoder corresponding to channel 𝑐 reconstructs 
the channel from the different computed latent pro- 
jections encoded from each channel and the temporal 
information encoded in ℎ 𝑡 −1 . 𝑧 𝑡 represents the view of 
the latent space 𝑧 at time 𝑡 , encoded by each channel. 
�̂� 𝑐 
𝑡 

represents the predicted value. 
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n 𝛼 (derivation of the approximation can be found in Molchanov et al.,
017 ). 

 𝐾𝐿 ( 𝑞( 𝑧 𝑡 |𝑥 𝑐 ≤ 𝑡 , 𝑧 <𝑡 ) ||𝑝 ( 𝜇𝑧 𝑡 )) ≈
− 𝑘 1 𝜎( 𝑘 2 + 𝑘 3 ln 𝛼) + 0 . 5 ln 1 + 𝛼−1 + 𝑘 1 , with 

 1 = 0 . 63576 𝑘 2 = 1 . 87320 𝑘 3 = 1 . 48695 . (8) 

As in our model we have a learned prior for 𝑡 > 1 ( Eq. (3) ), the spar-
ity constraint is applied uniquely at time 𝑡 = 1 (the initial time point). 

.1.4. Reconstruction and inference 

Thanks to the first term of the lower bound in Eq. (6) that forces
he joint decoding of each channel, we can reconstruct the data for a
issing channel using existing ones. For a missing channel 𝑐 𝑚 , a set of

vailable channels 𝑐 𝑎 and for each time point 𝑡 , we can decode the shared
atent space 𝑧 𝑡 and reconstruct the missing channel using the following
xpression: 

 

𝑐 𝑚 
𝑡 

= 𝔼 𝑐 𝑎 𝔼 𝑞( 𝑧 𝑡 |𝑥 𝑐 𝑚 𝑡 
) [ 
∑

𝑝 ( 𝑥 𝑐 𝑎 
𝑡 
|𝑧 𝑡 )] . (9)

.1.5. Sensitivity analysis 

To further interpret how the features in each modality or channel in-
eract with each other, we performed a sensitivity analysis of the model.
his was done by computing the Jacobian of the the trained model with
espect to each input, defined as: 

 𝑖,𝑗 = 

𝜕𝑔 𝑖 ( 𝐱) 
𝜕𝑥 𝑗 

, (10)

here 𝐽 𝑖,𝑗 represents the partial derivative of the output 𝑔 𝑖 ( 𝐱) w.r.t. in-
ut 𝑥 𝑗 , with 𝑖 and 𝑗 being specific channels. Sensitivity analysis using
he Jacobian has been shown to be comparable with sampling-based
echniques in related works ( Molamohammadi et al., 2020; Sobol’ and
ucherenko, 2009 ). Sensitivity analysis for each modality and feature
as done by measuring the mean of the square Jacobian matrix over all

he subjects. For each output channel, we compute the Jacobian w.r.t
ach of the other input channels. This allows us to find the most im-
ortant features in a specific channel for reconstruction of a different
ne and it gives us a clearer picture of the learned cross-channel rela-
ionships. We also averaged separately the Jacobians that correspond to
ognitively Normal (CN), Alzheimer’s Disease subjects (AD) or patients
ith Mild Cognitive Impairment (MCI), to assess any differences across
roups. 
4 
.2. Data 

In this section we present the two different datasets we use in our
xperiments: a generated synthetic dataset and a real medical dataset. 

.2.1. Synthetic data 

We evaluated our method on a longitudinal synthetic dataset, which
as generated from a set of latent variables of fixed dimensionality, as
escribed in Eq. (11) : 

, 𝑧 𝑣 ∼  (0 , 𝐼 𝑧 𝑑𝑖𝑚 ) 
 ∼  (0 , 𝐼 𝑔 ) 
 

𝑐 
𝑡 
= 𝑊 

𝑐 ( 𝑧 + 𝑧 𝑣 × 𝜆 × 𝑡 ) + 𝜀 

(11) 

𝐼 𝑧 𝑑𝑖𝑚 
is the identity matrix of size 𝑧 𝑑𝑖𝑚 × 𝑧 𝑑𝑖𝑚 , where 𝑧 𝑑𝑖𝑚 is the di-

ensionality of the latent space. 𝑊 

𝑐 ∈ ℝ 

𝑔×𝑧 𝑑𝑖𝑚 , with 𝑔 being the dimen-
ionality of the output channel 𝑐, is a random orthonormal matrix that
inearly relates each channel 𝑐 to the shared latent space, and 𝜀 is Gaus-
ian noise. Longitudinal samples are generated by a random linear trans-
ormation through the latent space via a variable 𝑧 𝑣 for 𝑡 time points,
ith this translation modulated by a scalar 𝜆. The number of time points

s variable for each generated sample, with the number of time points
anging from 5 to 11. Supplementary Figure S2 shows a projection of
he latent data and examples of trajectories over time. 

.2.2. ADNI data 

Data used in this paper were obtained from the Alzheimer’s Disease
euroimaging Initiative (ADNI) database ( Mueller et al., 2005 ). The pri-
ary goal of ADNI has been to study whether serial imaging and bio-

ogical markers, and clinical and neuropsychological assessment can be
ombined to measure the progression of MCI and early AD. Informed
onsent was obtained from all individual participants in the study by
DNI. Restrictions apply to the availability of these data. Data are avail-
ble at https://adni.loni.usc.edu/ . 

We focused on three different data modalities (i.e. channels). Full
nformation on the features used can be found in supplementary file S3:

• Brain subcortical volumes: We selected MRI T1 weighted images,
preprocessed using gradient warping, scaling, B1 correction, and
N3 inhomogeneity correction. Images were then automatically pro-
cessed with the longitudinal pipeline ( Reuter et al., 2012 ) in
FreeSurfer. Specifically, an unbiased within-subject template space
and image was created using robust, inverse consistent registration
( Reuter et al., 2010 ). Several processing steps, such as skull strip-
ping, Talairach transform, atlas registration as well as spherical sur-
face maps and parcellations were then initialized with common in-
formation from the within-subject template, significantly increasing

https://adni.loni.usc.edu/
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Table 1 

Demographic characteristics of the cohort at baseline. Age and 
education presented as average and standard deviation, in years. 
N: Number of subjects. APOE 𝜀 4: Apolipoprotein 𝜀 4, percentage 
with 1 or 2 alleles. CN: Cognitively normal. MCI: Mild cognitive 
impairment. AD: Alzheimer’s disease. MMSE: Mini-mental state 
examination. 

CN MCI AD Total 

N 229 324 180 897 
Age 74 . 6 ± 5 . 3 73 . 7 ± 7 . 3 73 . 7 ± 7 . 8 73 . 6 ± 7 . 0 
Education 16 . 2 ± 2 . 7 15 . 7 ± 3 . 0 15 . 0 ± 2 . 9 15 . 8 ± 2 . 9 
MMSE 29 . 06 ± 1 . 09 27 . 13 ± 1 . 80 23 . 19 ± 1 . 97 27 . 09 ± 2 . 65 
Female 51 . 53% 40 . 12% 50 . 55% 46 . 70% 
APOE 𝜀 4 27 . 51% 56 . 17% 51 . 10% 47 . 80% 

Table 2 

Hyperparameters used in the model trained us- 
ing synthetic and ADNI data. Left column: pa- 
rameters used with the model trained on syn- 
thetic data. Right column: parameters used for 
the model trained on ADNI data. Layer size: 
size of all layers in the network (encoder, de- 
coder and 𝜑 ). RNN hidden: size of the hidden 
layer in the RNN. Parameters selected for the 
final model are highlighted. 

Hyperparameters Synthetic ADNI 

No. layers 0 , 1 0 , 1, 2, 3 
Layer size 10, 20 20, 50, 80 
No. latent dim. 20 , 50, 100 15, 20, 30 

RNN hidden size 5 , 10, 30 30, 50 , 70 
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reliability and statistical power. We used the parcelled subcortical
volumes, obtaining 40 features. 

• Cortical thickness: We used the same imaging pipeline described
above and obtained the parcelled cortical thickness, obtaining 68
features. 

• Cognitive assessment scores: A set of six different neuropsycholog-
ical assessment tests that capture the level of cognitive decline of
patients in specific tasks and domains. 

We selected subjects that had no missing data at their baseline ac-
uisition for any of the channels, and all subsequent follow-ups that had
t least one of the existing longitudinal modalities and had no missing
eatures for this modality. With these criteria, we selected 897 subjects,
ith a total of 7224 multimodal acquisitions. Among those acquisitions,
e extracted 3799 subcortical volumes, 3813 cortical, and 4847 cogni-

ive score measures. This allows us to train and test our model with
issing modalities and variable number of follow-ups. 

Table 1 shows the demographic information of the selected cohort.
egarding the distribution of the data across modalities, supplementary
igure S4 shows the information about missing, mean and maximum
umber of acquisitions across modalities. Median time interval between
cquisitions is 6. ± 1 months (Median ± Interquartile range). The number
f acquisitions per diagnosis is 5 ± 1 for AD, 7 ± 10 for CN and 8 ± 4 for
CI. 

Other relevant modalities were considered, such as PET derived
iomarkers or cerebrospinal fluid biomarkers, but were ultimately not
ncluded because of their low amount of subjects with acquisitions avail-
ble in the cohort and the low number of follow-ups. 

.3. Experiments 

For our synthetic experiments, we generated 1000 samples, using 3
hannels and 15 features per channel, with time points for each sample
anging from 5 to 11. The parameters used to train the model for these
ata are described in Table 2 (first column). For the ADNI cohort, we
5 
rst separated our data between training ( 80% ) and test ( 20% ) set, with
17 and 180 subjects respectively. We stratified data by diagnosis across
ets. The test set was then held out, and we performed a grid search on
he training set over a set of hyperparameters, shown in Table 2 (second
olumn). Parameters selected for the final model are highlighted. With
o extra layers, 𝜑 𝑒𝑛𝑐 and 𝜑 𝑑𝑒𝑐 ( Fig. 2 ) are parametrized as linear transfor-
ations, so the only non-linearity of the network is the recurrent step.
e also applied the constraint described in Section 2.1.2 on the number

f dimensions used in the latent space for the cognitive channel, limit-
ng its dimensionality to 5, so that the latent dimension is lower than
he actual dimension of the channel. 

The model was trained using gradient descent with Adam optimiza-
ion( Kingma and Ba, 2015 ), at a learning rate of 2 e- 3 until convergence
roughly 3000 epochs). Code and training settings of the model can be
ound in the repository of the paper. 

We evaluated the results on the held-out test set on two reconstruc-
ion tasks using the joint decoder approach described in Section 2.1.4 : 

• Cross-channel reconstruction: , where each different channel was
reconstructed from each of the other channels. 

• Full channel reconstruction: , where each channel was recon-
structed from the rest of the channels. 

We evaluated both tasks using mean absolute error (MAE). 
To test the robustness of MC-RVAE to missing features within modal-

ties, the previous tasks were also performed while adding increasing
mounts of random missing features for each channel and subject in the
est set. 

To assess the temporal prediction of our model, we removed the last
ime points from each subject in the test set, and we predicted them
sing the rest of the data. We tested the prediction capabilities of our
odel using one, two and three time points. We also did an additional

xperiment including two non-longitudinal modalities, with only infor-
ation on the first acquisition: demographic information and APOE. For

hose channels we did not perform the recurrent step, and the informa-
ion of the channel present at 𝑡 = 1 is reproduced at all time points for
alculating the joint reconstruction across channels. 

.3.1. Baseline methods 

We compared our models to three different baseline methods: 

• K nearest neighbors (KNN) imputation: for each sample (subject data
at a given time point) in the test set, we performed a KNN search for
each channel 𝑐 to find the 𝑘 most similar samples in our training
set (in all our experiments 𝑘 = 5 ). We use the average (along 𝑐) of
these similar samples as an estimation of channel 𝑐 in the test sam-
ple. When having missing features within a modality, we used an
additional KNN to impute those values, per channel. 

• Random forest prediction: we computed a linear model describing
the temporal progression for each sample and channel in the train-
ing set. Then, we trained a random forest regressor model to predict
the estimated linear progression parameters (intercept and slope)
channel-wise. We used this model to predict the parameters of a lin-
ear progression for each test sample, and used this linear model to
make the prediction. This baseline only allows us to perform recon-
struction from one channel to another. 

• Group factor analysis (GFA): we used GFA ( Klami et al., 2015 ) for
missing channel reconstruction. GFA generates linear factors de-
scribing the relationships across channels, and is able to model two
or more channels. Implementation was done with R, using the de-
fault parameters. 

Results were compared using an ANOVA model for each task. Dif-
erences across methods were evaluated with post hoc pairwise Tukey
SD tests. 

.3.2. Qualitative experiments 

To illustrate the generative capabilities of our approach, we recon-
tructed cortical and subcortical data of two synthetic patients: one with
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 stable, healthy cognitive trajectory, and another one that is rapidly
eclining. We generated four time points for each of the subjects and vi-
ualized the longitudinal neurodegeneration trajectories and their plau-
ibility. The longitudinal synthetic data generated can be found in Sup-
lementary Data S5. We compared these trajectories to cortical and sub-
ortical trajectories obtained by averaging the first four time points from
N and AD subjects from the training set. 

. Results 

.1. Synthetic results 

Table 3 shows the quantitative reconstruction results from a separate
est set, compared to the baseline methods. 

.2. ADNI results 

Table 4 shows the MAE of the cross-channel (top) and full channel
bottom) reconstruction, on the hold out ADNI test set, for our model
nd the baseline models for comparison. Figure 4 shows the performance
f the model and KNN for increasing amounts of missing data within
ach modality. The MAE obtained by KNN imputation is also shown for
omparison. Results on the prediction task are found on Supplementary
le S6, and the results with the two additional non-longitudinal channels
demographics and APOE) can be found in Supplementary file S7. 

Figure 5 shows the latent space obtained by MC-RVAE on the test
et coloured by diagnosis, age, and time point, for the two latent dimen-
ions with lowest dropout (dropout ratio of each latent dimension can
e found in Supplementary Figure S8). 

Figure 6 shows the weights of 𝜑 𝑒𝑛𝑐 for the three different channels
cognitive scores, cortical thickness and subcortical volumes) for the two
atent space dimensions represented in Fig. 5 , plus another latent space
imension that was selected by variational dropout, but did not have
eights associated to cognitive scores (see Section 2.1.2 ). Regions and

eatures for each modality (columns) are colored blue if they are directly
orrelated to the corresponding dimension (row), or red if inversely cor-
elated. Fig. 7 shows the cross-channel sensitivity analysis results on the
odel. Sensitivity analysis by disease stage are shown in Supplementary

igure S9. 
Figure 8 shows four synthetic time points of cortical and subcor-

ical data. We sampled them using two sequences of 4 time points of
ognitive data: a typical sequence of healthy control and a sequence
f a rapidly declining patient, with similar demographic information.
he colour scale displayed on the figure was obtained by computing the
egative z-score of the generated data with respect to a control group
f cognitively healthy, amyloid-negative patients ( Shaw et al., 2009 ). 

. Discussion 

We propose a generative model based on recurrent variational au-
oencoders that is able to jointly model a latent trajectory from multi-
odal, longitudinal data. We introduce the main concepts and assump-

ions behind the model, derive its lower bound, and test it both on syn-
hetic and real data from a cohort of patients afflicted by AD to recon-
truct missing modalities by leveraging the cross-channel information
earned by the model. 

For the synthetic data, we show the strength of our model to recon-
truct longitudinal signals, compared to the baseline methods ( Table 3 ).
ur model is able to recover the latent trajectory of the data to recon-

truct missing channels, even when no information about the original
hannel is fed to the model. The baseline methods do not leverage the
ongitudinal data and treat each time point as a separate unit, whereas
C-RVAE is able to capture those trajectories across patients and uses

his variability to improve the prediction across channels. However, this
an come at a cost, as our within-channel reconstruction results are sub-
ar for some cases (C2 reconstruction). The latent representation is op-
6 
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Fig. 4. Reconstruction performance with missing data. The first three rows correspond to the cross-reconstruction task across modalities, and the last row to the full 
reconstruction task. 
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imized to solve all the reconstruction problems jointly, and thus there
s not a privileged modality to reconstruct in the cost function. This does
ot happen for a single-modality model, which lacks the cross-modality
apability. 

For the ADNI cohort, we compare the performance of our model
n reconstructing each channel from the others, both individually and
ointly. For the first task, the performance of our model is comparable
o GFA and KNN, with the latter slightly outperforming our model in
erms of MAE. However, our results, while having an overall slightly
orse MAE, have a much lower standard deviation (Vol. to Cog. re-

onstruction KNN vs MC-RVAE, for example, Table 4 ), meaning that
he predictions are more stable. Moreover, the better performance of
7 
NN is mainly on the cognitive score prediction task, where, given the
ature of the features (values situated on a narrow specific range), a
earest neighbors approach would naturally have lower errors, as the
redictions would always be on a “valid ” value. From the computa-
ional cost perspective, MC-RVAE is faster than the KNN baseline at
nference time (0.1s compared to ∼ 1 𝑠 ), although MC-RVAE uses GPU
cceleration. 

For full channel reconstruction, our model outperforms the baselines
or volume and cortical thickness, although it has a similar performance
or cognitive scores, likely due to the same reasons pointed before. MC-
VAE is robust to missing data within a channel, specially in the cross-
hannel reconstruction task (volume to cortical thickness, or cortical
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Fig. 5. Visualization of top two selected dimensions from latent space by variational dropout, for subjects on the hold-out test set. Each point represents a different 
time point of a subject. Left: colored by diagnosis. Middle: colored by age. Right: colored by time point. 

Fig. 6. Weights encoded by 𝜑 𝑒𝑛𝑐 , for the two latent dimensions represented in Fig. 5 , plus the next dimension with lowest dropout. Note that 𝑧 28 does not have 
weights associated with cognitive scores, hence the missing graphic. Brain figures generated using Brainpainter ( Marinescu et al., 2019 ). 

8 
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Table 4 

Cross-channel (top) and full channel (bottom) reconstruction results, for the ADNI data. All results computed over test set. All values are mean absolute error (MAE) 
and standard deviation of the error over each subject and time point. Best results are highlighted. Rows are the original channels, columns the target channel. 
Statistical significance is defined with a post hoc Tukey HSD test between the best result and the second best result after an ANOVA test across all methods. Vol.: 
MRI subcortical volumes. Cort.: MRI cortical thickness values. Cog.: cognitive values. KNN: K nearest neighbors. RF: random forest. GFA: Group factor analysis. 
MC-RVAE: multi-channel recurrent variational autoencoder. ∗∗∗ 𝑝 < 0 . 001 . 

KNN RF GFA MC-RVAE 

Vol. Cort. Cog. Vol. Cort. Cog. Vol. Cort. Cog. Vol. Cort. Cog. 

Vol. 𝟎 . 43 ± 0 . 09 0 . 79 ± 0 . 23 𝟎 . 64 ± 0 . 44 ∗∗∗ 0 . 74 ± 0 . 18 0 . 96 ± 0 . 34 0 . 95 ± 0 . 82 - 0 . 78 ± 0 . 28 0 . 71 ± 0 . 4 0 . 44 ± 0 . 09 𝟎 . 67 ± 0 . 16 ∗∗∗ 0 . 75 ± 0 . 19 
Cort. 0 . 75 ± 0 . 19 𝟎 . 45 ± 0 . 08 ∗∗∗ 𝟎 . 6 ± 0 . 39 ∗∗∗ 0 . 99 ± 0 . 26 0 . 81 ± 0 . 22 0 . 93 ± 0 . 84 0 . 74 ± 0 . 2 - 0 . 7 ± 0 . 39 𝟎 . 68 ± 0 . 19 ∗∗∗ 0 . 49 ± 0 . 09 0 . 75 ± 0 . 26 
Cog 0 . 8 ± 0 . 21 0 . 8 ± 0 . 27 𝟎 . 𝟎 𝟕 ± 𝟎 . 𝟎 𝟔 ∗∗∗ 1 . 06 ± 0 . 37 1 . 11 ± 0 . 43 0 . 44 ± 0 . 37 0 . 76 ± 0 . 2 0 . 79 ± 0 . 29 - 𝟎 . 61 ± 0 . 51 ∗∗∗ 𝟎 . 63 ± 0 . 51 ∗∗∗ 0 . 14 ± 0 . 08 

KNN GFA MC-RVAE 

Vol. 0 . 72 ± 0 . 18 0 . 74 ± 0 . 20 𝟎 . 68 ± 0 . 16 ∗∗∗ 
Cort. 0 . 73 ± 0 . 22 0 . 77 ± 0 . 28 𝟎 . 68 ± 0 . 21 ∗∗∗ 
Cog. 𝟎 . 57 ± 0 . 38 0 . 68 ± 0 . 38 0 . 59 ± 0 . 48 

Fig. 7. Cross-channel sensitivity analysis. Each column corresponds to a different reconstruction target (also colored), with each bar representing the importance of 
that feature for reconstructing that modality. 
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hickness to volume), thereby demonstrating its ability for missing data
nference. 

Variational dropout selects 16 (out of 30) dimensions of 𝑧 , including
he subset of latent dimensions that were selected by constraining the
atent space for the cognitive score channel due to its lower dimension-
lity (see Section 2.1.2 ). We observe a good separation between diag-
osis and age, but we do not find a distinct temporal structure. More-
ver, subjects with AD have less time points. This might bias our re-
ults, since temporal trajectories at later stages of the disease are not
s well represented in our data as trajectories at earlier and middle
tages. 
9 
As for the hyperparameters of our model, we tried using a deeper
etwork, but no significant improvements were achieved (Supplemen-
ary Figure S10). This could be due to the noise present in this type of
euroimaging data over time; the overall signal is already captured by
he simpler network, and adding more complexity to the model leads
o overfitting. Another reason could be the sample size. More data and
ime points per subject could help unraveling the temporal and multi-
odal relations of the data, and in that case, a deeper model could boost

he performance. 
Since 𝜑 𝑒𝑛𝑐 and 𝜑 𝑑𝑒𝑐 ( Eq. (1) ) are linear functions, their parameters

ell us how the network encodes the information to the shared latent
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Fig. 8. Trajectories of synthetic cortical and subcortical generated by MC-RVAE. 
𝜎: standard deviation with respect to the control population. a) and b) respec- 
tively corresponds to simulated imaging progressions associated to stable and 
pathological cognitive progressions ( Section 2.3.2 ). Figures were generated us- 
ing Brainpainter ( Marinescu et al., 2019 ). 
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pace. For 𝑧 2 , the dimension is strongly related to cognitive health, with
MSE and RAVLT being directly related to healthy cognitive ability

and thus have positive weights) and the other ones being inversely
elated (with negative weights). This relationship can also be seen in
ig. 5 (left). Regarding cortical areas, we observe large weights associ-
ted to middle and superior frontal areas, motor cortex, central sulcus
nd cuneus, whereas subcortical areas show importance in the caudate
nd amygdala. For 𝑧 3 , we observe a higher importance of CDRSB and
AQ for the cognitive scores, and a large negative weight on the mid-
el frontal lobe compared to 𝑧 2 . On subcortical volumes, the network
ssigns a larger relevance to the cerebellum cortex and the amygdala,
nd none to the caudate. Temporal lobes and the hippocampi are not
iven importance for those two latent dimensions, which means that
uch variation is captured in other dimensions, and the network prior-
tizes cognitive changes to capture the disease (given the large weights
ssociated to cognitive values in 𝑧 2 and the differentiation between di-
gnosis in Fig. 5 , left). Looking at 𝑧 28 , which is a dimension only char-
cterized by cortical and subcortical volumes, strengths this hypothesis.
e can observe large weights associated to the cortex, in a general, sym-
etric way, and with a large importance to subcortical areas such as the
ippocampus. 

Sensitivity analysis reveals the contribution of each feature for the
ross-channel reconstruction task. For reconstructing subcortical vol-
mes (green column), the most important cortical regions were the pre-
entral (right and left), while ADAS13 and RAVLT were the cognitive
ests with highest relevance, something also observed with the other
hannels. When trying to predict cognitive scores (blue column), cere-
ellum, hippocampus, amygdala, thalamus and ventricles are the most
elevant subcortical regions. Atrophy on those regions is associated with
n impact on cognitive functions ( Jacobs et al., 2017; Yi et al., 2016 ).
or the cortex, the most important regions to predict cognitive scores
ere the entorhinal, which has also been associated with cognitive im-
airment in AD ( Du et al., 2001 ). This further reinforces the idea that
C-RVAE learns relevant associations across modalities to perform the

ross-reconstruction task. No large differences were observed when sep-
rating the analysis by disease stage, only a higher influence of cognitive
cores (specially for ADAS13 and RAVLT, but also for the rest) for AD
nd MCI subjects compared to CN, which might indicate that the model
as learned to focus on cognition to predict the evolution of the imaging
iomarkers when the patient is in a worse state. 
10 
Performance of the prediction tasks was not worse than the one ob-
ained by our baseline methods (constant value and a linear model). The
xperiment adding two non-longitudinal channels showed the model im-
roving in some areas while underperforming in others (same channel
econstruction, for example). Overall, results in those experiments are
imilar to those obtained by the baseline methods, motivating further
xtensions of the current approach to jointly account for longitudinal
nd non-longitudinal data. 

To further visualize and interpret the reconstruction capability of
he model and how the channels are related to each other, Fig. 8 shows
wo different sequences of cortical and subcortical MRI data generated
y the network, for a cognitive healthy patient and a rapidly declin-
ng patient. The generated data present a plausible decline of cortical
hickness and subcortical volume for both cases, remaining consistent
longside the individual trajectory of the subject. Subject a) shows sta-
ility across time for a stable cognitive trajectory, whereas subject b)
hows a rapid decline on the hippocampus and across the cortex, es-
ecially in the temporal cortex, which are areas known to be directly
ffected by AD ( Bakkour et al., 2013 ). Compared to the sequences ob-
ained by averaging real CN and AD data (Supplementary Figure S11),
he synthetic trajectories are close, with the main difference being that
he model predicts a steeper atrophy at later time points compared to
he average trajectories. Averaging data, however, has a smoothing ef-
ect that could explain this difference. 

Compared to existing methods, our model principal contribution is
ts flexibility to scale to a larger number of channels and a variable num-
er of time points. For example, the model proposed in Cao et al. (2019) ,
ased on canonical correlation analysis, can only use two different longi-
udinal channels and is not generative. Compared to the multi-channel
odel of Antelmi et al. (2019) , from which our model is built upon,

ur implementation includes temporal structure and allows for tempo-
al data to be included and generated. 

We developed and tested a generative model on multimodal, lon-
itudinal data based on recurrent variational autoencoders. The model
an combine different modalities of variable dimension acquired across
ime, learn their cross channel dependencies and intra-channel temporal
ependencies, and use this information to reconstruct and predict miss-
ng modalities. Results on synthetic and real medical data show strong
erformance on missing data reconstruction, suggesting its potential for
uture time point prediction. A hindrance of our model is the assump-
ion of equal time spacing between acquisitions. In our (real) dataset,
pacing between time points has a small variance, so the impact of this
ssumption should be minor. However, specifying temporal information
ould allow the model to sample synthetic data at specific future points,
hich could be of use for clinical trial design. 

Moreover, we noticed that variational dropout tends to select unnec-
ssary latent dimensions and does not fully sparsify the latent space, so
 better approach to introduce this concept and its assumptions to the
odel would improve its performance and interpretability. Finally, we

hould take advantage of the uncertainty learnt by the model to under-
tand for which tasks and situations the model has less confidence, and
mprove on it. The reconstruction capabilities of the proposed model
nd its ability to integrate longitudinal information and relate imaging
nd non-imaging data can be useful to further understand the temporal
volution of the disease and, in a more practical way, to generate patient
oherent missing scans. 

ata and Code Availability Statement 

All code used to produce the pipeline and experiments de-
cribed in this paper can be found in the repository of the project
ttps://www.github.com/GerardMJuan/RNN-VAE . Data used in this
aper were obtained from the Alzheimer’s Disease Neuroimaging Ini-
iative (ADNI) database [Mueller et al, 2005]. The primary goal of
DNI has been to study whether serial imaging and biological mark-
rs, and clinical and neuropsychological assessment can be combined to
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easure the progression of MCI and early AD. Informed consent was
btained from all individual participants in the study by ADNI. Re-
trictions apply to the availability of these data. Data are available at
ttp://www.adni.loni.usc.edu-upon-application . 
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